Example 5: Quadratic Application with Table of Values

A ball was thrown into the air and the path generated the following data:

X	Time (sec)	0	0.25	0.5	0.75	1	1.25	1.5	1.75	L,	Xmin = 0
l	Height (m)	1	9	11	13	12	11	7	0.5	L ₂	x max = 2
اد	Determine the quadratic regression equation that best matches this data										Ymin= 0

a) Determine the quadratic regression equation that best matches this data.

Ymax = 14

b) What is the maximum height the ball reaches, and when does it reach this maximum height?

c) How high will the ball be after $0.6 \sec^2$ given X = 0.6

d) How long does it take until the ball hits the ground at the end of the throw?

1.77 seconds 4 Need to detertime X-int.

e) How long does it take before the ball reaches 5 m in height for the first time?

Example 6: Quadratic Application with Verbal Description Given

A company that sells jeans finds that when the jeans are priced at \$80 per pair, they can sell 500 pairs. It is estimated that for each \$2.00 decrease in price, the company can sell 50 more pairs of jeans.

- a) Complete the following table of values.
- b) Determine the quadratic regression equation that models the revenue as a function of the price.

$$y = -25z^2 + 2\overline{500x} + 0$$

c) Find the price of jeans that will generate

the maximum revenue.

d) Determine the maximum revenue.

	×	y		
Number of Pairs Sold	Price	Revenue \$		
500	80	40 000		
550	78	42900		
606	76	45600		
650	74	48/00		

